Endocannabinoids and cannabinoid analogues block cardiac hKv1.5 channels in a cannabinoid receptor-independent manner.

نویسندگان

  • Adriana Barana
  • Irene Amorós
  • Ricardo Caballero
  • Ricardo Gómez
  • Lourdes Osuna
  • M Pilar Lillo
  • Cristina Blázquez
  • Manuel Guzmán
  • Eva Delpón
  • Juan Tamargo
چکیده

AIMS Endocannabinoids are synthesized from lipid precursors at the plasma membranes of virtually all cell types, including cardiac myocytes. Endocannabinoids can modulate neuronal and vascular ion channels through receptor-independent actions; however, their effects on cardiac K(+) channels are unknown. This study was undertaken to determine the receptor-independent effects of endocannabinoids such as anandamide (N-arachidonoylethanolamine, AEA), 2-arachidonoylglycerol (2-AG), and endocannabinoid-related compounds such as N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), the endogenous lipid lysophosphatidylinositol (LPI), and the fatty acids from which some of these compounds are endogenously synthesized, on human cardiac Kv1.5 channels, which generate the ultrarapid delayed rectifier current (I(Kur)). METHODS AND RESULTS hKv1.5 currents (I(hKv1.5)) were recorded in mouse fibroblasts (Ltk(-) cells) by using the whole-cell patch-clamp technique. Most of these compounds inhibited I(hKv1.5) in a concentration-dependent manner, the potency being determined by the number of C atoms in the fatty acyl chain. Indeed, AEA and 2-AG, which are arachidonic acid (20:4) derivatives, exhibited the highest potency (IC(50) approximately 0.9-2.5 microM), whereas PEA, a palmitic acid (PA-16:0) derivative, exhibited the lowest potency. The inhibition was independent of cannabinoid receptor engagement and of changes in the order and microviscosity of the membrane. Furthermore, blockade induced by AEA and 2-AG was abolished upon mutation of the R487 residue, which determines the external tetraethylammonium sensitivity and is located in the external entryway of the pore. AEA significantly prolonged the duration of action potentials (APs) recorded in mouse left atria. CONCLUSION These results indicate that endocannabinoids block human cardiac Kv1.5 channels by interacting with an extracellular binding site, a mechanism by which these compounds regulate atrial AP shape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats

Introduction: Previous studies have shown that the cannabinoid system is involved in anxiety.In addition, transient receptor potential vanilloid type-1 (TRPV1) channels are new targets for the development of anxiolytics. The present study investigated the possible interaction between the cannabinoid and vanilloid systems on anxiety-like behavior in rats. Methods: Four different groups of male ...

متن کامل

Frequency-Dependent Cannabinoid Receptor-Independent Modulation of Glycine Receptors by Endocannabinoid 2-AG

Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB) receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we a...

متن کامل

Interaction between cannabinoid receptors and inhibition of L-type calcium channel on passive avoidance learning and memory in male rats

Introduction: There is currently a debate over the interaction between Ca2+ channels and cannabinoid system on learning and memory processing. In this study, we examined the effect of acute injection of cannabinoid agonist (Win- 55212-2) (Win) or antagonist (AM251), following chronic injection of verapamil, as a L-type Ca2+ channels blocker, on passive avoidance (PA) test in male Wistar rats...

متن کامل

Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels.

At many central synapses, endocannabinoids released by postsynaptic cells inhibit neurotransmitter release by activating presynaptic cannabinoid receptors. The mechanisms underlying this important means of synaptic regulation are not fully understood. It has been shown at several synapses that endocannabinoids inhibit neurotransmitter release by reducing calcium influx into presynaptic terminal...

متن کامل

International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂.

There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cardiovascular research

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2010